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Transient linear growth in laminar magnetohydrodynamic duct flow is analysed. The
duct is straight with rectangular cross-section and electrically insulating walls. The ap-
plied uniform magnetic field is oriented perpendicular to the mean flow direction and
parallel to one of the walls. Optimal perturbations and their maximum amplifications
over finite time intervals are computed. The optimal perturbations are increasingly
damped by the magnetic field, localized in the boundary layers parallel to the magnetic
field irrespective of the duct aspect ratio. Typically, the optimal perturbations have
non-vanishing streamwise wavenumber as found in magnetohydrodynamic channel
flow with spanwise magnetic field. The Hartmann boundary layers perpendicular to
the magnetic field do not contribute to the transient growth.

1. Introduction
Even though their Reynolds number (Re) is typically large, technological

magnetohydrodynamic (MHD) flows are found in transitional or weakly turbulent
states much more often than non-magnetic flows. This is because the imposed static
magnetic field suppresses turbulence and instabilities. For instance, in continuous
casting of steel slabs (see, e.g., Cukierski & Thomas 2008), intense (0.1–0.5 T)
magnetic fields are imposed to suppress turbulent feeding jets and to damp turbulent
eddies in the mould. For growing large silicon crystals by the Czochralsky method,
magnetic fields are used to achieve better quality of the crystal through suppression of
undesired fluctuations of temperature and admixture concentration and establishing
a favourable temperature gradient near the solidification surface (von Ammon et al.
2005). Turbulence suppression might be of interest for liquid-metal (Li) cooling and
breeding blankets in future nuclear fusion reactors (see, e.g., Smolentsev, Moreau &
Abdou 2008).

In the current paper, the flow of an electrically conducting fluid in a rectangular
duct is studied in the presence of a steady uniform magnetic field parallel to two of the
perfectly insulating walls. The limit of low magnetic Reynolds number is considered
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because it corresponds to the typical situation for industrial and laboratory liquid-
metal flows.

A rectangular duct flow in the presence of a transverse magnetic field is
an archetypal case of liquid-metal MHD flows. Albeit simple, the configuration
incorporates the main features of technological liquid-metal flows: magnetic
suppression and anisotropy, strong mean shear and specific MHD boundary layers. As
a matter of fact, the pioneering study of the duct flow by Hartmann & Lazarus (1937)
is considered by many as the starting point of liquid-metal magnetohydrodynamics
as a scientific discipline. At a sufficiently strong magnetic field, the MHD base
velocity develops a flat core and the mean shear, and thus the potential for instability
and turbulence, is limited to the boundary layers which are of two types (see, e.g.,
Branover 1978; Müller & Bühler 2001): the Hartmann layers appearing at the walls
perpendicular to the magnetic field and the Shercliff layers at the walls parallel to the
magnetic field. Reviews of earlier works and an example of recent simulations of the
duct flow can be found in the books by Müller & Bühler (2001) and Branover (1978)
and the paper by Kobayashi (2008), respectively.

The problem of linear stability to exponentially growing perturbations has been
solved only for few cases of MHD duct flow. A combination of wall conductivities
leading to the jet-like sidewall layers was analysed by Ting et al. (1991). However
the results of this work disagreed with the experiments of Reed & Picologlou
(1989). Concerning uniformly conducting or uniformly insulating walls which are
characterized by monotonic flow profiles in the boundary layers, no solution of the
full linear stability problem has been reported to the knowledge of the authors. The
stability analysis in the limit of strong magnetic field produces critical Reynolds
numbers, which are orders of magnitude higher than those observed in experiments.
The most recent example of such study is the one by Potherat (2007), where linear
stability of two-dimensional approximations of sidewall layers was analysed.

This discrepancy is also observed for other wall-bounded parallel shear flows. In
purely hydrodynamic flows (classical pipe, duct and channel flows), turbulence appears
at much lower Reynolds number than predicted by the analysis of exponentially
growing perturbations. The currently accepted explanation is the concept of bypass
transition based on the understanding that because of the non-normality of the
linearized operator, a non-normal mode which is a combination of eigenfunctions
can experience transient algebraic growth even if every eigenmode eventually decays.
An essential physical mechanism of the growth is the ‘lift-up effect’, namely the
redistribution of the mean flow velocity by the perturbations (see, e.g., Landahl
1980). If transient amplification factors are large, the non-normal perturbation can
grow to the point at which it reaches the nonlinear regime and becomes capable
of modifying the base flow and rendering it temporarily unstable to secondary
infinitesimal perturbations. A transition according to the bypass scenario has been
demonstrated for the plane channel (by Reddy et al. 1998), pipe (by Zikanov 1996) and
rectangular duct (by Biau, Soueid & Bottaro 2008) flows (see Schmid & Henningson
2001 for a review). In all these cases, the ‘optimal’ modes providing the strongest
transient growth were found to have the form of streamwise-independent rolls
evolving into streamwise streaks. Of course, the two-step scenario is rarely realized
in a clear-cut way. The actual picture of transition is more complex. In particular,
emphasis on global optimal modes in the form of streamwise rolls can be misleading.
Nonlinear interaction between the suboptimal non-streamwise modes can lead to
transition at lower Reynolds number and perturbation amplitude as discussed by
Schmid & Henningson (2001). Nevertheless, understanding the transient growth,
nonlinear modulation and breakdown is undoubtedly the key to understanding the



Optimal linear growth in MHD duct flow 275

transition. These phenomena were also shown, for example, by Waleffe (1997) and
Hof et al. (2005) to play a decisive role in sustaining turbulence at low and moderate
Re by forming the minimal loop of rolls, streaks and travelling waves transforming
into each other.

More relevant for the present paper are the results obtained for the channel flows
with wall-normal (Hartmann flow) and spanwise magnetic fields. For the Hartmann
flow, the optimal modes were analysed by Gerard-Varet (2002), Airiau & Castets
(2004) and Krasnov et al. (2004). The modes were found to have the form of
streamwise rolls confined to the Hartmann layers. Direct numerical simulations of
the streak breakdown and subsequent transition were performed by Krasnov et al.
(2004). It was demonstrated that weak noise added to the optimal perturbations of
realistic amplitude generated transition at the values of R = Re/Ha, where Ha is the
Hartmann number, between 350 and 400. This range of Reynolds numbers R based
on the Hartmann layer thickness was in remarkable agreement with the data of the
MHD duct experiments of Moresco & Alboussière (2004) as opposed to the results
of the linear stability analysis of the Hartmann layer by Lingwood & Alboussière
(1999) that predicted the critical value Rc = 48 250.

In the case of a channel with spanwise magnetic field, the base flow retains its
hydrodynamic profile, and the main effect of the magnetic field on the transition
has been found (Krasnov et al. 2008) to be the suppression of streamwise rolls and
streaks with their strong spanwise gradients. As a result, the largest amplification is
no longer provided by streamwise rolls, but by rolls oriented at an oblique angle to
the flow direction. The angle grows with the Hartmann number and reaches the limit
corresponding to purely spanwise rolls (Tollmien–Schlichting waves) at high Ha. As
was shown by Krasnov et al. (2008), two symmetric oblique rolls with opposite values
of the spanwise wavenumber effectively trigger the transition serving as secondary
perturbations to each other.

The transition behaviour in the MHD duct flow cannot be predicted by simply
extrapolating the results obtained for the channel flows with transverse and spanwise
magnetic fields. Firstly, the reasons are the corner interaction between the boundary
layers and the limiting effect of walls in the duct flow. Secondly, the structure of
sidewall layers in a duct is essentially three-dimensional and strongly different from
the structure of the Poiseuille flow considered by Krasnov et al. (2008). The subject
of the current paper is precisely to analyse the transient growth of optimal modes in
the MHD duct flow. A detailed study of the optimal modes is important as a first
step towards understanding the transition in general. In particular, we will determine
whether or not the transient growth first occurs within the sidewall boundary layers
and analyse how the results of the channel flow studies are related to the more realistic
case of a duct.

The value of understanding the nature of the transient growth extends beyond the
subject of transition. The optimal modes have been shown to play a role as elements
of a fully developed turbulent flow. There is also a possibility that the large-scale
intermittency found in the case of a channel with spanwise magnetic field by Boeck
et al. (2008) is realized in the duct flow. In that case, the optimal modes are likely to
be the dominant elements of the flow in a certain phase of the flow development. As
yet another motivation of our study, we can mention the technologically important
concept of electromagnetic control (suppressing or triggering) of transition. Several
mechanisms of such control were suggested, for example using an array of magnets
or electric promoters in the form of strips of different electric conductivity embedded
into the wall (see, e.g., Smolentsev & Dajeh 1996). Knowing the spatial characteristics
of optimal modes is essential for development of such control strategies.
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Figure 1. Geometry of the duct flow under magnetic field B0: (a) r� 1 approaching the case
of channel flow under spanwise field, (b) r = 1 square duct and (c) r� 1 approaching the
Hartmann channel geometry.

The paper is organized as follows. After introducing the physical model and
parameters in § 2, the structure of the base flow is presented in § 3. The method which
determines the optimal perturbations is provided in § 4. The numerical method used
to compute the optimal mode is described in § 5. Results are given in § 6. We start
with the case of a square duct and continue by discussing the effect of the aspect
ratio of the duct cross-section. Concluding remarks are found in § 7.

2. Physical model and parameters
We consider the flow of an electrically conducting fluid driven by an imposed

constant pressure gradient in a rectangular duct. The coordinates x, y and z are in
the streamwise, spanwise and cross-stream directions, respectively. The duct walls are
located at z = ± d/2 and y = ± a/2 (see figure 1) and are assumed to be electrically
insulating. The flow is subjected to a homogeneous magnetic field B0 = B0e, where
e≡ (0, 0, 1). The various configurations are distinguished by the aspect ratio r = a/d .

Other boundary conditions, for example those of perfectly conducting walls or thin
walls of finite conductivity, are possible and are of interest for future analysis. Our
choice of insulating walls is justified by applications in metallurgy, materials processing
and blanket design for future reactors, where walls are often made of materials of low
conductivity. Furthermore, considering insulating walls allows us direct comparison
with the earlier studies of transient growth in channels (Gerard-Varet 2002; Airiau &
Castets 2004; Krasnov et al. 2004, 2008).

By assuming a low magnetic Reynolds number, the governing equations can be
reduced to the Navier–Stokes system for the velocity v and pressure p with an
additional Lorentz force term, i.e.

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇ p + ν∇2v +

1

ρ
j × B0, (2.1)

∇ · v = 0, (2.2)

where ν and ρ stand for kinematic viscosity and density. The induced electric current
density is given by Ohm’s law:

j = σ (−∇ φ + v × B0), (2.3)
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where σ is the electric conductivity of the fluid. By neglecting displacement currents
and assuming the fluid to be electrically neutral, it follows that the currents are
solenoidal, i.e. ∇ · j =0, which leads to an equation for the electric potential φ:

∇2φ = ∇ · (v × B0) . (2.4)

The no-slip conditions are imposed at the walls:

vx = vy = vz = 0 at z = ±d/2 and y = ±a/2. (2.5)

Since no current flows through the electrically insulating walls and the velocity v is
zero at these walls, (2.3) leads to

∂φ

∂z
= 0 at z = ±d/2, (2.6)

∂φ

∂y
= 0 at y = ±a/2. (2.7)

For non-dimensionalization, the characteristic length is taken to be half of the smaller
channel width L≡ min(a/2, d/2) and the velocity scale as the centreline velocity U0.
The scales of time and pressure are therefore taken as L/U0 and ρU 2

0 . Finally, the
scales of magnetic field and electric potential are B0 and LU0B0.

The non-dimensional governing equations and boundary conditions become

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v + N (−∇ φ × e + (v × e)× e) , (2.8)

∇ · v = 0, (2.9)

∇2φ = ∇ · (v × e) , (2.10)

vx = vy = vz =
∂φ

∂z
= 0 at z = ±d/(2L), (2.11)

vx = vy = vz =
∂φ

∂y
= 0 at y = ±a/(2L). (2.12)

Three independent non-dimensional parameters appear, namely the Reynolds number

Re ≡ U0L

ν
, (2.13)

the aspect ratio

r ≡ a

d
(2.14)

and the magnetic interaction parameter

N ≡ Ha2

Re
, (2.15)

where Ha is the Hartmann number,

Ha ≡ LB0

√
σ

ρν
. (2.16)

The duct configurations considered in the current paper are illustrated in figure 1.
In addition to the canonical case of a square duct with r =1, we analyse flows with
r = 1/3 and 1/9 and flows with r = 3 and 9. In flows with r < 1, the magnetic field is
parallel to the longer wall of the duct. The asymptotic limit at r→ 0 is the channel
flow with spanwise magnetic field considered by Krasnov et al. (2008). To stress the
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possible analogy, the flows in ducts with r < 1 are referred to as the ‘spanwise case’
in the remainder of the paper. In the ducts with r > 1, the magnetic field is directed
parallel to the shorter wall. The asymptotic limit of this configuration at r→∞ is
the Hartmann channel flow. Transient growth in the Hartmann channel flow was
analysed by Gerard-Varet (2002), Airiau & Castets (2004) and Krasnov et al. (2004).
Correspondingly, the term ‘Hartmann case’ is applied to duct flows with r > 1.

Note that two simulations with identical Re and Ha and aspect ratios r and 1/r

correspond to flows in the same duct geometry with a magnetic field of equal strength
but perpendicular orientations. The analysis is conducted for a single Reynolds
number Re =5000 and Hartmann numbers between 0 and 50.

3. Base duct flow
For the linear stability analysis we linearize the equations around a laminar base

flow which is steady, purely streamwise and independent of the streamwise coordinate.
It is fully described by the streamwise velocity component UB(y, z) and the electric
potential φB(y, z), which satisfy the dimensionless equations

∂2UB

∂y2
+

∂2UB

∂z2
= Ha2

(
∂φB

∂y
+ UB

)
− λ, (3.1)

∂2φB

∂y2
+

∂2φB

∂z2
= −∂UB

∂y
, (3.2)

with the boundary condition

UB = 0,
∂φB

∂z
= 0 at z = ±d/(2L), (3.3)

UB = 0,
∂φB

∂y
= 0 at y = ±a/(2L). (3.4)

The value of the non-dimensional pressure gradient λ,

λ ≡ − L2

U0νρ

∂PB

∂x
, (3.5)

is not explicitly known but is implicitly given by the constraint that UB(0, 0) = 1. We
can bypass this problem by solving the above linear system specifying λ= 1, and the
solutions for UB and φB thus obtained are then renormalized so that UB(0, 0) = 1.

The base flow is computed using the finite-difference method described in § 5. This
numerical solution has been verified for all aspect ratios r and Hartmann numbers
Ha considered in the present work, through a comparison with the infinite-series
solution that can be found, e.g., in Müller & Bühler (2001). The structure of this flow
can be found in the books of Branover (1978) and Müller & Bühler (2001). However,
we provide a brief discussion of some features that have significant implications for
instability and transient growth. As seen in figure 2, a sufficiently strong magnetic
field leads to a base flow consisting of a flat core and MHD boundary layers. The
flat core becomes more pronounced and the boundary layers become thinner with
growing Hartmann number. In the spanwise case r < 1, the Hartmann number is
defined using the spanwise half-width a/2, and the Hartmann layer thickness scales
as δHa ≈ a/Ha and the Shercliff layer thickness as δSh≈ a/r1/2Ha1/2. In the Hartmann
case r > 1, the Hartmann number is based on the width d/2, and we have δHa ≈ d/Ha

and δSh≈ d/Ha1/2.
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Figure 2. Base flow for Ha =50 and Re =5000: (a) r = 1/9 (spanwise case), (b) r =1 and
(c) r = 9 (Hartmann case). The arrow indicates the orientation of the applied magnetic field.
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Figure 3. Spanwise case r � 1: Basic velocity profiles UB (y, z =0) in the central cross-section
parallel to the shorter walls of the duct. Plots show the cases r =1/9, r = 1/3 and r =1 with
(a) Ha =10 and (b) Ha = 50. The Poiseuille velocity profile is shown by circles to illustrate
the convergence of the duct flow profiles for r→ 0.

The relation between the shape of the duct base flow and the two asymptotic limits
of channel flow with spanwise magnetic field and channel flow with normal magnetic
field is illustrated in figures 3 and 4. Base velocity profiles are shown in the central
cross-section parallel to the shorter walls or, equivalently, perpendicular to the walls
that become the channel walls in the asymptotic limit. Qualitatively similar behaviour
is observed for non-central cross-sections, provided they are taken outside the corner
areas.

It is seen in figure 3(a, b) that as r decreases, the Shercliff layers become thicker;
the flat core disappears in the y direction; and the velocity profile U (y, 0) approaches
the parabolic Poiseuille flow profile characteristic of the channel flow with a spanwise
magnetic field. Thinner Shercliff layers at higher Ha require smaller aspect ratios to
achieve convergence to the parabolic profile.

It will become apparent in § 6 that the Shercliff boundary layers are the critical areas
of transient growth. This is true even in the case of the duct geometries approaching
the Hartmann channel, i.e. r� 1. It is, therefore, pertinent to analyse the structure of
Shercliff boundary layers at r > 1. The profiles of the base flow velocity in the central
cross-section z = 0 shown in figure 4(b, d ) illustrate the key feature already indicated
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Figure 4. Hartmann case r � 1: Structure of basic velocity profiles for Ha = 10 (a,b) and
Ha = 50 (c,d ). Plots (a) and (c) show the basic velocity profiles UB (y = 0, z) in the central
cross-section parallel to the shorter wall of the duct. The velocity profiles of Hartmann channel
flow are shown by circles to illustrate the convergence of the duct flow profiles for r→∞.
Plots (b) and (d ) show the velocity profiles UB (y + a/2L, z = 0) within a Shercliff layer. The
aspect ratio r varies from r = 1 to r =9.

by the scaling δSh≈ d/Ha1/2. The structure of the Shercliff layers changes with Ha

but is practically insensitive to the size a of the duct in the direction perpendicular
to the magnetic field.

4. Linear evolution of optimal perturbations
Let us now split the flow fields into the basic flow and three-dimensional

perturbations as

v = UB(y, z)(1, 0, 0) + vp, φ = φB(y, z) + φp(x, y, z), p = PB(x) + pp. (4.1)

We linearize the system with respect to the perturbations and consider the evolution
of decoupled monochromatic Fourier modes,

(vp, φp, pp) = (û(y, z, t), v̂(y, z, t), ŵ(y, z, t), φ̂(y, z, t), p̂(y, z, t)) exp(iαx), (4.2)

where α is the streamwise wavenumber. The evolution of such infinitesimal three-
dimensional perturbations is governed by the linear system[

∂

∂t
+ iαUB

]
û +

∂UB

∂z
ŵ +

∂UB

∂y
v̂ + iαp̂ − 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
û + Nû + N

∂φ̂

∂y
= 0,

(4.3)
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∂

∂t
+ iαUB

]
v̂ +

∂p̂

∂y
− 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
v̂ + Nv̂ − iαNφ̂ = 0, (4.4)

[
∂

∂t
+ iαUB

]
ŵ +

∂p̂

∂z
− 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
ŵ = 0, (4.5)

iαû +
∂v̂

∂y
+

∂ŵ

∂z
= 0, (4.6)

[
∂2

∂z2
+

∂2

∂y2
− α2

]
φ̂ − iαv̂ +

∂û

∂y
= 0 (4.7)

with the boundary conditions

û = v̂ = ŵ = 0,
∂φ̂

∂z
= 0 at z = ±d/(2L), (4.8)

û = v̂ = ŵ = 0,
∂φ̂

∂y
= 0 at y = ±a/(2L). (4.9)

To quantify the amplification at time T , a norm, typically the kinetic energy of the
perturbations, is defined. This norm can be orthogonally decomposed in a Fourier
basis in the x direction, which implies that the individual contributions of each
wavenumber α can be considered independently. We follow such a procedure and
define the norm

E(T ) ≡
∫

(û(y, z, T )û+(y, z, T ) + v̂(y, z, T )v̂+(y, z, T ) + ŵ(y, z, T )ŵ+(y, z, T )) dy dz,

(4.10)

where the superscript + denotes complex conjugation and spatial integration is
performed over the entire duct section. The amplification gain of any given
perturbation at time T is the ratio E(T )/E(0). This quantity can be maximized over all
possible initial shapes in (4.2) to give the maximum amplification Ĝ(α, T , Ha, Re, r)
at time T among the disturbances with specific wavenumbers α and non-dimensional
parameters Ha, Re and r .

Using a Lagrangian formalism, the maximum of E(T )/E(0) is determined via an
optimization with two constraints: (i) the disturbance energy E(0) at time t =0 is
equal to unity; (ii) the disturbance satisfies the linear governing equations as well
as the boundary conditions during the complete time interval [0, T ]. Lagrangian
multipliers – called adjoint fields – are introduced to enforce these constraints. These
adjoint fields (ũ(y, z, t), ṽ(y, z, t), w̃(y, z, t), φ̃(y, z, t), p̃(y, z, t)) are shown to satisfy
the adjoint equations

[
∂

∂τ
− iαUB

]
ũ− 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
ũ + Nũ− iαp̃ − ∂φ̃

∂y
= 0, (4.11)

[
∂

∂τ
− iαUB

]
ṽ − 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
ṽ +

∂UB

∂y
ũ + Nṽ − ∂p̃

∂y
+ iαφ̃ = 0, (4.12)

[
∂

∂τ
− iαUB

]
w̃ − 1

Re

[
∂2

∂z2
+

∂2

∂y2
− α2

]
w̃ +

∂UB

∂z
ũ− ∂p̃

∂z
= 0, (4.13)

iαũ +
∂ṽ

∂y
+

∂w̃

∂z
= 0, (4.14)
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∂2

∂z2
+

∂2

∂y2
− α2

]
φ̃ −N

∂ũ

∂y
+ iαNṽ = 0 (4.15)

with the boundary conditions

ũ = ṽ = w̃ = 0,
∂φ̃

∂z
= 0 at z = ±d/(2L), (4.16)

ũ = ṽ = w̃ = 0,
∂φ̃

∂y
= 0 at y = ±a/(2L). (4.17)

One obtains the optimal perturbation for time T by an iterative scheme, which is
schematically illustrated by a diagram,

u(y, z, 0)
Direct−→ u(y, z, T ),

↑ ↓
ũ(y, z, 0)

Adjoint←− ũ(y, z, T ).

⎫⎪⎬
⎪⎭ (4.18)

First, one propagates a given initial condition forward in time using the direct problem.
This result serves as an ‘initial’ condition for the backward propagation by the adjoint
equations:

ũ(y, z, T ) = u(y, z, T ), ṽ(y, z, T ) = v(y, z, T ), w̃(y, z, T ) = w(y, z, T ). (4.19)

After the backward propagation another relation between the direct and adjoined
variables at t =0 is imposed:

ũ(y, z, 0) =
1

γ
u(y, z, 0), ṽ(y, z, 0) =

1

γ
v(y, z, 0), w̃(y, z, 0) =

1

γ
w(y, z, 0). (4.20)

An updated initial condition for the next iterative step is then available. This process
should be self-consistent: convergence is reached when the initial condition for the
forward problem does not change appreciably – up to a normalization constant –
by an appropriately chosen criterion from one iterative step to the next. Finally,
the maximum energy amplification is computed by propagating the converged initial
condition once more in time and by forming the ratio of the disturbance energy at
the end of the time interval to the energy at the beginning. The derivation of the
adjoint equations and the iteration procedure is analogous to that for the channel
flow presented in Krasnov et al. (2008). Some other particulars on the mathematical
formulation can be found in the general reference Schmid & Henningson (2001).

The iterative method computes the maximum energy amplification Ĝ(α, T , Re,

Ha, r) as well as the structure of the optimal perturbation associated with a specific
wavenumber α for given parameters T , Ha, Re, r . The function Ĝ can be maximized
over wavenumbers α, thereby providing the maximum amplification M̂tot (T , Re, Ha, r)
among all the perturbations at given time T and flow parameters. This maximum
amplification is reached at a particular wavenumber αtot (T , Re, Ha, r). Further
maximization over time T gives the global maximum amplification Mopt (Re, Ha, r),
which is reached at time T = Topt (Re, Ha, r). The corresponding optimal
wavenumber is denoted by αopt (Re, Ha, r). For purely streamwise perturbations, one

defines the equivalent quantities M̂stream(T , Re, Ha, r)≡ Ĝ(α =0, T , Re, Ha, r) and
Mstream(Re, Ha, r).
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5. Numerical method and verification
The base flow, direct and adjoint equations ((3.1)–(3.4), (4.3)–(4.9) and (4.11)–(4.17)

respectively) are solved with a finite-difference approximation of second order on the
rectangular duct cross-section. We use a collocated grid arrangement with velocity,
electric current, pressure and electric potential defined at the same grid points. The grid
is orthogonal and non-uniform. It is stretched in the wall-normal y and z directions to
provide necessary refinement near the walls. This is done by applying transformations
based on hyperbolic functions,

y =
a

2L

tanh(ζyη)

tanh(ζy)
, z =

d

2L

tanh(ζzθ)

tanh(ζz)
, (5.1)

in which coefficients ζy and ζz determine the grid stretching.
The problem is discretized on a uniform grid [−1, 1]×[−1, 1] in the variables (η, θ).

Computations are performed on a grid consisting of up to 82 points in the direction
of the shorter side of the duct and up to 288 points in the direction of the longer
side. The grid size is modified in accordance with the values of r and Ha. The grid
stretching parameters ζy and ζz vary between 1 and 2, so as to maintain the resolution
of each boundary layer to no less than 12 grid points.

The operators grad(p), grad(φ) and div(u) as well as the velocity gradients in the
convective term are expressed in terms of partial derivatives with respect to η and θ

and are thereafter discretized in the interior domain using standard central differences
of second order. Similarly, the viscous term 
u/Re is approximated with the standard
five-point central difference operator, which provides second-order accuracy in the
interior. For points near the walls, one-sided three-point formulae are applied, which
are also second-order accurate.

For time stepping, the standard explicit projection method with second-order
Adams–Bashforth scheme is used. First, the intermediate non-solenoidal velocity
field u∗ is computed:

3u∗ − 4un + un−1

2δt
= 2Rn − Rn−1, (5.2)

where Rn and Rn−1 stand for the sum of nonlinear, viscous and Lorentz force terms.
The solenoidal velocity field un+1 is then obtained through correction

un+1 = u∗ − 2
3

t ∇ pn+1. (5.3)

Pressure and electric potential fields are obtained via the Poisson equations

∇2pn+1 =
3

2
t
∇ · u∗ (5.4)

and

∇2φn+1 = ∇ · (un+1 × e). (5.5)

The electric potential satisfies the Neumann boundary conditions (see (4.8)–(4.9) and
(4.16)–(4.17)). For the pressure field, the appropriate boundary conditions are found
by projecting the correction equation (5.3) on the wall-normal direction:

∂pn+1

∂n
=

3

2
t
u∗n. (5.6)

These Poisson equations were solved by a direct solver from the FISHPACK libraries
(Adams, Swarztrauber & Sweet 1999) providing a second-order finite-difference
approximation with a standard five-point stencil for a two-dimensional rectangular
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domain. Alternatively a multigrid iterative second-order solver from the MUDPACK
libraries (Adams 1999) was also used. Both solvers have been checked for several
reference problems. For the MUDPACK solver, three or four multigrid cycles per
time step are sufficient to obtain a fully converged solution.

The base flow was computed by an iterative procedure. During each iteration, a
Poisson equation was solved, in which the right-hand sides of (3.1) for UB and (3.2) for
φB were replaced by the value computed using the fields obtained from the previous
iteration. These Poisson equations were discretized using the same grid, coordinate
transformation and the second-order finite-difference approximation as the optimal
perturbation equations. The converged solution has been verified through comparison
with the infinite-series representation (see Müller & Bühler 2001).

Finally, the accuracy of the procedure (4.18) to get the optimal perturbations
is secured by conducting a sufficiently large number of iterations. In all cases, at
least 20 iterations are performed, after which the relative error ‖G(k+1)−G(k)‖/G(k) is
computed, where G(k) denotes the maximum amplification factor obtained at iteration
k. If the error is smaller than 10−8, the iterations are stopped. Typically, the number of
iterations needed to achieve this criterion varied in the limits of [50 . . . 100], depending
on the grid size, aspect ratio r and Hartmann number Ha.

We have verified our numerical code for several cases. The first test case is pure
hydrodynamic (Ha = 0) duct flow with different aspect ratios. For this case, we have
reproduced the flow patterns shown in figure 2 of Galletti & Bottaro (2004). We have
also reproduced the flow structures and the values of amplification factor G obtained
by D. Biau (personal communication, September 2009) for a square duct at Re = 1000
to within 1 %. The second test case is MHD channel flow. For this case the boundary
conditions were changed to periodic in the y direction. We have reproduced the linear
optimal growth results for the Hartmann flow (Gerard-Varet 2002; Krasnov et al.
2004) and for the Poiseuille flow under spanwise magnetic field (Krasnov et al. 2008).

6. Results
The numerical investigation of transient growth of linear perturbations has been

conducted for Ha = 0, 10, 30 and 50 and Re = 5000. This Reynolds number is below
the exponential instability limit Re = 5772 for plane Poiseuille flow and for a pure
hydrodynamic duct flow of arbitrary cross-section (see Tatsumi & Yoshimura 1990).
For a duct flow with a magnetic field, there are no results for the normal-mode
instability. Our computations give no indication that exponential instability is present
for this Reynolds number.

The analysis includes the streamwise perturbations (α = 0) as well as perturbations
with α �=0. The investigated range of wavenumber α extends from 0 to 6, which has
been found sufficient to capture the global maximum. The maximum range of time
T is 200 for 0 � Ha � 10 and 70 at Ha = 30 and Ha = 50. The optimal values of α

and T corresponding to the maximum amplification are determined to an accuracy
of 0.01 and 1, respectively.

In figure 5, the global maximum amplification Mtot (Re, Ha, r) and the maximum
amplification of streamwise perturbations Mstream(Re, Ha, r) are shown as functions
of Ha and r . Transient growth is present in all cases but is strongly suppressed by an
imposed magnetic field. This is true for both types of perturbations and for all aspect
ratios. The obvious explanation of such a suppression is the reduction by the Joule
dissipation of perturbation kinetic energy. Remarkably, the maximum amplification
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Figure 5. Global maximum amplification Mtot (Re,Ha, r) (bold line) and maximum
amplification of streamwise perturbations Mstream (Re,Ha, r) (dashed line) are shown at
Re = 5000 for different Hartmann numbers Ha and different aspect ratios r . The spanwise
case r � 1 is presented in (a) and the Hartmann case r � 1 in (b).

is insensitive to the aspect ratio in the Hartmann case r � 1. This feature will receive
an explanation in the discussion below.

6.1. Results for square duct r = 1

The amplification factors for arbitrary and purely streamwise perturbations are
presented in figure 6. The curves for the case Ha = 0 (figure 6a) reproduce the
results obtained by Biau et al. (2008) for smaller Reynolds number. The strongest
amplification is due to the streamwise perturbations, except for small times T . Similar
to the findings of Biau et al. (2008), the optimal streamwise modes have the form
of four centrally symmetric rolls at smaller T (the first peak in figure 6a) and the
form of two diagonally symmetric rolls at larger T (the second peak). Both peaks
provide an almost identical level of amplification Mstream . Similar behaviour, when
one streamwise optimal mode is taken over by another one, is also observed for
the magnetic case. In particular, for Ha = 10 (figure 6b), the discontinuities of the
slope of the amplification curves correspond to changes of optimal modes at T ≈ 15
and T ≈ 50. This effect is, however, much less pronounced than in the non-magnetic
case (e.g. Ha = 0 versus Ha = 10) and almost disappears for stronger magnetic field
(Ha = 30 and 50 in figure 6c, d ).

At non-zero magnetic field, streamwise perturbations experience stronger Joule
dissipation and stronger suppression than perturbations with α �=0. At Hartmann
numbers larger than a certain critical value (between 0 and 10) the strongest transient
growth is provided by non-streamwise perturbations. Similar effects were observed by
Krasnov et al. (2008) for channel flow with spanwise magnetic field. For all Hartmann
numbers considered in our analysis, the streamwise modes return to being dominant
at large T , but for much lower amplification.

The typical spatial structure of the optimal perturbations is illustrated in figure 7
for the streamwise case and in figure 8 for the global optimum with α �= 0. For non-
zero magnetic field the perturbations become localized within the sidewall (Shercliff)
boundary layers. Comparing figures 7(a) (respectively figure 7b) with figure 7(c)
(respectively figure 7d ) and the left and right panels of figure 8, we clearly see that by
increasing the Hartmann number the optimal perturbations are more concentrated
near the sidewalls in the increasingly thinner Shercliff layers.
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Figure 6. Case of square duct (r = 1). Energy amplification factors M̂tot (T ,Re,Ha, r) ( )

and M̂stream (T ,Re,Ha, r) ( ) as a function of time T . The results are shown for Re = 5000
and various Hartmann numbers: (a) Ha = 0, (b) Ha = 10, (c) Ha = 30, (d ) Ha = 50.

For the optimal streamwise perturbations, the internal structure and evolution
are, in their principal features, similar to non-magnetic, parallel shear flows, such
as channel or pipe flow. The only apparent difference is that optimal streamwise
perturbations in the MHD duct are strongly concentrated in the Shercliff layers as
mentioned above. The initial form of the optimal streamwise perturbations is that of
streamwise rolls (cf. figure 7a, c). The evolution is dominated by the lift-up mechanism,
which leads to development of streamwise streaks of low and high streamwise velocity
(cf. figure 7b, d ). The transformation from rolls to streaks can be quantified by the
distribution of perturbation energy among velocity components. At t = 0, the energy
is almost entirely in the components vy and vz. The streamwise component vx contains
about 0.1 % of total energy at Ha = 10 and about 2.5 % at Ha =50. At the time Topt

of maximum amplification, the streamwise velocity component invariably contains
more than 99 % of the total perturbation energy.

The patterns of optimal perturbations with α �= 0 are significantly more complex,
although they can be presented in terms of roll-like and streak-like structures. The
‘rolls’ at t = 0 are visible in figure 8(a, b), while the streaks that have evolved
by Topt are illustrated in figure 8(c–f ). The main difference with the streamwise
perturbations is that the structures are inhomogeneous in the x direction and form
complex overlapping patterns within the Shercliff boundary layers. The distribution
of perturbation energy among the velocity components varies with Ha. In the initial
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Figure 7. Case of square duct (r = 1): the streamwise optimal perturbation which generates the
maximum amplification Mstream (Re,Ha, r = 1) for Reynolds number Re = 5000 and Hartmann
numbers (a, b) Ha = 10 and (c, d ) Ha = 50. The optimal perturbations at t = 0 are shown in
(a) and (c) using the velocity vectors projected on to the duct cross-section. In (b) and (d ) the
isolines of streamwise velocity perturbation for the optimal perturbations are displayed at time
Topt of largest amplification. The solid and dashed lines in (b) and (d ) correspond to positive
and negative values, and the arrow indicates the direction of the applied magnetic field.

state, v2
x , v2

y and v2
z contain, respectively, 2 %, 15 % and 83 % of the total energy at

Ha =10 and 15 %, 4 % and 81 % at Ha = 50. In the state of maximum amplification
at Topt , the distribution changes to 98 %, 0.2 % and 1.8 % at Ha = 10 and to 82 %,
1.2 % and 16 % at Ha = 50. The data at Topt are particularly interesting. If one
identifies streaks with the dominance of the streamwise velocity components, we
conclude that the streak-like structures dominate the optimal perturbations (strongly
at Ha = 10 and less so at Ha = 50) even in the general (non-streamwise) case.

The non-streamwise perturbations in figure 8 are closely related to the oblique
optimal perturbations observed by Krasnov et al. (2008) in the channel with spanwise
magnetic field. The only apparent difference is that the confinement by the Hartmann
walls in the duct precludes periodicity in the z direction and thereby the existence of
perturbations with parallel isolines that are inclined with respect to the x–y plane. The
structures in figure 8 strongly resemble those obtained in the channel with spanwise
field by superposition of symmetric modes with the same streamwise wavenumbers α

and spanwise z wavenumbers with equal magnitude and opposite sign.
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Figure 8. Case of square duct (r = 1): the optimal perturbations corresponding to the
maximum amplification Mopt (Re,Ha, r) are displayed for Reynolds number Re = 5000 and
Hartmann numbers (a, c, e) Ha =10 and (b, d, f ) Ha = 50. Vector plots together with
isocontours of the streamwise velocity are shown in the two-dimensional cuts (a, b) at t = 0
and (c, d ) at Topt . Isosurfaces of the streamwise velocity vx at Topt are also shown in (e) and (f ).
The arrow indicates the orientation of the applied magnetic field.

6.2. Spanwise case r < 1

The results for ducts elongated in the direction of the magnetic field will be compared
with the square duct and with the channel with spanwise magnetic field (Krasnov
et al. 2008). The amplification factors M̂tot (T , Re, Ha, r) and the corresponding
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Figure 9. Transient growth for the spanwise case (r < 1). Data for r = 1 and for a channel
with spanwise magnetic field (Krasnov et al. 2008) are included for comparison. (a, c, e) Energy

amplification factors M̂tot (T ,Re,Ha, r) and (b, d, f ) the corresponding optimal wavenumbers
αtot (T ,Re,Ha, r) are shown as functions of T for Re =5000 and Ha = (a,b) 10, (c,d ) 30 and
(e,f) 50.

wavenumbers αtot (T , Re, Ha, r) are shown in figure 9. For all r and Ha considered, the
strongest growth is provided by perturbations with α �= 0. The optimal wavenumber
αtot is monotonically decreasing with T . For small T it starts at large values exceeding
the limit α = 6 of our wavenumber range. An increase of Ha at a fixed r consistently
leads to lower amplifications, to a shift of the optimal time Topt to smaller values
and finally to an increase of the optimal wavenumber αopt (this can be seen, e.g., in
figure 8). Conversely, decreasing r from 1 to 1/9 at fixed Hartmann number Ha leads
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Figure 10. Spanwise case (r = 1/9). The optimal perturbation at Topt corresponding to
maximum amplification Mopt (Re,Ha, r) is shown using isosurfaces of the streamwise velocity
perturbation for Reynolds number Re = 5000 and Hartmann numbers (a) Ha = 10 and
(b) Ha = 50. The arrow indicates the orientation of the applied magnetic field.

to an increase of the maximum amplification Mopt , to a shift of the optimal time
Topt to larger values and to a reduction of the global optimal wavenumber αopt . The
change in Mopt is significant at Ha = 10 (about fourfold), less significant at Ha = 30
and even less so at Ha = 50.

The spatial structure of the global optimal perturbation is illustrated in figure 10
using isosurfaces of the streamwise velocity. As for the square duct (cf. figure 8e, f )
the perturbations have the form of non-streamwise streaks at the time of strongest
amplification. They occupy most of the Shercliff layers if one ignores the corners.

All plots in figure 9 demonstrate that the duct results tend towards the curves for
the channel with spanwise magnetic field as r decreases. This is true for the general
shape of the curves as well as for their quantitative characteristics, namely the global
maximum amplification, the time Topt and the optimal wavenumber αopt . For r = 1/9,
convergence to the channel case is almost achieved at Ha = 10. For Ha = 30 and
Ha = 50, one evidently needs lower aspect ratios than the minimum r = 1/9 used in
our computations. In the hydrodynamic case, an aspect ratio of r ∼ 1/6 is sufficient
as shown by Galletti & Bottaro (2004).

The behaviour with decreasing r can be explained by the structure of the optimal
perturbations. As for the square duct, the structure of the perturbations is analogous
to that of the oblique perturbations, which dominate in the channel with spanwise
field. When decreasing r while keeping Ha fixed, the optimal perturbations residing in
the Shercliff layers experience a weaker lateral confinement. One thereby approaches
the channel in terms of geometry.

The deviation between the channel and the duct with fixed r < 1 is increasing
with increasing Ha. This can be explained by differences in the basic velocity
distributions between the duct and the channel. For the duct, the relevant parts
are the Shercliff layers, which scale as δSh≈ ar−1/2Ha−1/2. By contrast, the channel
base flow is insensitive to the magnetic field and is characterized by a parabolic
Poiseuille profile.

6.3. Hartmann case r > 1

For aspect ratios r > 1, the shorter walls of the duct are parallel to the magnetic field.
Curves of maximum amplification and optimal wavenumbers are shown in figure 11.
General tendencies are the same as for the spanwise case (cf. figure 9): perturbations
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Figure 11. Transient growth for the Hartmann case r > 1. Data for the square duct r = 1 and
for the Hartmann channel are included for comparison. Energy amplification factors (a, c, e)

M̂tot (T ,Re,Ha, r) and the corresponding optimal wavenumbers (b, d, f ) αtot (T ,Re,Ha, r) are
shown as functions of T for Re = 5000 and Ha = (a,b) 10, (c,d) 30 and (e,f) 50.

with α �= 0 dominate, although the optimal αtot decreases with T . Likewise, increasing
Ha leads to a significant reduction of the amplification and to a shift of the global
maximum towards smaller times.

A major difference between figures 9 and 11 is in the effect of the aspect ratio
r . In contrast with the spanwise case r < 1, the amplification rates and optimal
wavenumbers are virtually insensitive to r at r � 1. Furthermore, the results show no
tendency of converging towards the results for the Hartmann channel. This is true
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Figure 12. Hartmann case (r > 1). The streamwise optimal modes, which generate the
maximum amplification Mstream (Re,Ha, r), for Reynolds number Re = 5000 and Hartmann
numbers (a, c) Ha = 10 and (b, d) Ha = 50. Spatial structure at Topt is shown by isosurfaces
of the streamwise velocity for (a, b) r = 3 and (c, d) r =9. Note that for r = 9, only one half of
the domain is shown. The arrow indicates the orientation of the applied magnetic field.

for the amplification curves (as illustrated in figure 11a, c, e) and for the optimal
wavenumbers αopt (the optimal perturbations in the Hartmann channel are purely
streamwise). The reason for such a behaviour becomes clear when we consider the
structure of the optimal perturbations at r > 1. It is illustrated in figures 12 and
13 using the isosurfaces of the streamwise velocity at t = Topt . One can see that the
perturbations are invariably localized within the Shercliff boundary layers. This is true
for all values of r and Ha considered in our study. The global optimal perturbations
shown in figure 13 have a structure similar to that of the global optimal perturbations
observed at r = 1 and r < 1 (cf. figures 8e, f and 10). As illustrated in figure 12,
even the streamwise perturbations do not reproduce the behaviour of the streamwise
perturbations in the channel case. Rather, they are localized within the Shercliff
layers. For both kinds of perturbations, the localization within the Shercliff layers
means that increasing r , i.e. extending the duct in the y direction, does not affect their
development. This invariance with respect to r also relies on the convergence of the
basic velocity distribution near the sidewalls, which is demonstrated in figure 4(b, d ).

In addition, the basic velocity distribution within the Shercliff layer also becomes
approximately one-dimensional with a universal shape when it is scaled with δSh.
Because of this property, one can take the analysis of streamwise perturbations one
step further and look for scaling behaviour with respect to Ha. The basic idea is to
consider a single Shercliff layer in isolation and to neglect the Hartmann walls. One
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Figure 14. Rescaled amplification factor GHa2 as a function of rescaled time T Ha for
streamwise optimal perturbations. Results for the square duct r = 1 are shown for Re =5000
and Ha = 10, 30, 50 and 100.

thereby arrives at a configuration resembling channel flow with spanwise magnetic
field, except that the basic velocity distribution is that of the Shercliff layer and not
a parabolic profile. The length scale δSh of the basic velocity distribution depends on
Ha. Consequently, the arguments for the scaling of streamwise perturbations given
by Krasnov et al. (2008) for channel flow have to be modified slightly. Details are
given in the Appendix. The analysis provides the scaling

Ĝ(α = 0, T , Re, Ha, r) =

(
Re

Ha

)2

G (T Ha/Re) (6.1)

for streamwise optimal perturbations, where G is a universal function. Figure 14
shows that, as predicted by (6.1), the amplification curves at different values of
Ha follow each other closely when normalized with (Ha/Re)2 (amplification) and
Re/Ha (time). The scaling (6.1) also satisfies the Ha−2 decay of the amplification of
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streamwise perturbations in figure 5(b). However, these scaling arguments cannot be
applied to non-streamwise perturbations. We cannot provide a theoretical basis for
the apparent Ha−1.5 power law in figure 5(b).

7. Conclusions
We have analysed the optimal linear growth of perturbations in a duct flow with

rectangular cross-section and uniform, transverse magnetic field aligned with one pair
of walls.

The disturbances with the strongest amplification reside in the Shercliff layers.
Purely streamwise perturbations experience a strong suppression by the magnetic
field. They cease to be the most amplified perturbations at fairly low values of
Ha and are replaced by perturbations with a non-zero streamwise wavenumber on
account of a weaker damping by the magnetic field as discussed by Krasnov et al.
(2008) for the MHD channel flow. These observations apply irrespective of the aspect
ratio r .

When the Shercliff layers overlap at sufficiently low r , the basic velocity profile
across these layers approaches the parabolic Poiseuille profile. In this case, the results
for MHD channel flow with spanwise field are recovered in MHD duct flow. The
required values for r should be of order r ∼ 1/Ha because the width of the Shercliff
layers scales as δSh≈ ar−1/2Ha−1/2. By contrast, the limit of large r fails to reproduce
the results for Hartmann channel flow (with wall-normal magnetic field). In this latter
configuration, sidewalls are not present by definition, and hence there are no Shercliff
layers. In that instance, perturbations necessarily reside in the Hartmann layers.

The results for MHD duct flow at large r become independent of r on account
of the invariance of the basic flow within the Shercliff layers. From this perspective,
the MHD flow in a square duct captures all relevant aspects of the behaviour for
larger r . In addition, one can apply scaling arguments to individual Shercliff layers
and thereby recover a scaling of the amplification with Ha−2 at given Re found in
MHD duct simulations.

The fundamental mechanism of transient amplification in the MHD duct flow
appears to be the hydrodynamic lift-up mechanism for all parameter combinations
of Re, Ha and r in our present investigation. This conclusion is based on the relative
magnitude of velocity perturbation components at the beginning and the peak of
transient amplification. In contrast with our previous channel flow study with spanwise
field (Krasnov et al. 2008), the Hartmann walls preclude the existence of purely two-
dimensional perturbations, which are uniform along the magnetic field. In the MHD
channel with spanwise field, such perturbations provide transient amplification by
the Tollmien–Schlichting mechanism and lead to a minimum amplification level
irrespective of the magnitude of Ha. This effect is not seen in our present study.
However, the Tollmien–Schlichting mechanism should in principle be capable of
providing transient amplification in the MHD duct flow as well. To investigate this
possibility one would have to consider significantly larger values of Re and Ha

such that the Reynolds number based on the Shercliff layer thickness remains large
for large interaction parameter Ha2/Re. This assumption is made in the study by
Potherat (2007), where the flow is averaged in the direction of the magnetic field at
the outset.

Clearly, the next steps in the investigation of transition in MHD duct flow require
nonlinear simulations. Our present stability code has been used as a basis for the
development of a suitable direct numerical simulation code, which has already
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been successfully validated for hydrodynamic duct flow and MHD channel flows.
Preliminary simulations indicate that transition starts in the Shercliff layers as expected
from the transient growth analysis. It would also be interesting to analyse the transient
growth at larger Re and Ha. Although it is reasonable to believe that the key results
of the present study, such as the concentration of the growth in Shercliff layers, are
retained in a wide parameter range, some new features may appear.

We are grateful to André Thess for interesting discussions and useful comments,
to Damien Biau for sharing his results for code verification, and to the organizers
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Appendix. Scaling of streamwise perturbations
For purely streamwise perturbations, the two-dimensional basic velocity distribution

in the Shercliff layers (close for instance to the wall at y = −a/2) is approximated by a
one-dimensional profile U (y, z)≈U0(y+a/2), where y is the coordinate perpendicular
to the magnetic field.

Let us restart within a dimensional setting, and let us consider purely streamwise
perturbations that are periodic in the z direction with dimensional wavenumber β:

vi(y, t) exp(iβz), p(y, t) exp(iβz), φ(y, t) exp(iβz). (A 1)

The velocity v and vorticity ωy component along the y direction (wall-normal
direction) satisfy the dimensional equations that are obtained by taking the curl
and twice the curl of the linearized Navier–Stokes equations and projecting on the y

direction only:

∂t

ωy

β
= ν∇2 ωy

β
− ivDU0 − i

σB0

ρ
Dφ − B2

0σ

ρ

ωy

β
, (A 2)

∂t∇2v = ν∇4v + β2 B2
0σ

ρ
v, (A 3)

∇2φ = iB0D
ωy

β
, (A 4)

where D≡ ∂y , ∇2≡D2 − β2 and

η =
ωy

β
= iu (A 5)

with u the streamwise velocity. The velocity w in the z direction is determined by the
incompressibility:

Dv + iβw = 0. (A 6)

Let us then eliminate the term with Dφ in (A 2) by taking the derivative D of (A 2)
and using (A 4). The result is

∂tDη = ν∇2Dη − iD (vDU0)− i
B2

0σ

ρ
β2φ. (A 7)

The profile U0(y +a/2) attains a maximum value V at a distance δ from the wall. The
quantity δ characterizes the width of the Shercliff layer. Let us non-dimensionalize



296 D. Krasnov, O. Zikanov, M. Rossi and T. Boeck

(A 3), (A 4) and (A 7) by choosing the following units:

[y] = δ, [β] = 1/δ, [t] = δ2/ν, [U0] = [η] = [u] = V,

[v] = [w] = ν/δ, [φ] = V B0δ.

}
(A 8)

The dimensionless quantities are denoted by a tilde, e.g. ỹ =(y + a/2)/δ. The
dimensionless equations are

∂t̃D̃η̃ = ∇̃2D̃η̃ − iD̃
(
ṽD̃Ũ0

)
− iHa2

δ β̃
2φ̃, (A 9)

∂t̃ ∇̃2ṽ = ∇̃4ṽ + Ha2
δ β̃

2ṽ, (A 10)

∇̃2φ̃ = iD̃η̃. (A 11)

In these equations, the Hartmann number is based on δ:

Haδ = B0δ

√
σ

ρν
. (A 12)

When represented in units based on δ and V , the base velocity profile, i.e. Ũ0(ỹ), is the
same for different aspect ratios and Hartmann numbers. As a consequence, the above
equations only depend on two dimensionless parameters, namely the wavenumber β̃

(in ∇̃2) and Haδβ̃ . Boundary conditions for the variables need to be imposed on the
boundaries ỹ = 0 and ỹ = a/δ. However we assume here that the perturbations are
vanishing away from the Shercliff layer so that a/δ can be replaced by ∞.

The dimensional kinetic energy of the perturbations integrated across the Shercliff
layers thus reads

E(t) ≡
∫ a/δ

0

[
|u|2 + |v|2 + |w|2

]
dy =

ν2

δ

1

β̃2

(
Ev(t) + β̃2Re2

δEη(t)
)
, (A 13)

where

Ev(t) =

∫ ∞

0

(
|D̃ṽ|2 + β̃2|ṽ|2

)
dỹ and Eη(t) =

∫ ∞

0

|η̃|2dỹ (A 14)

and

Reδ =
V δ

ν
(A 15)

stands for the Reynolds number based on the thickness of the Shercliff layer.
If we assume that the mechanism of ordinary hydrodynamics applies, in which the

growth is due to the forcing of wall-normal vorticity by wall-normal velocity, the
energy at t = 0 is predominantly in the Ev term and, at maximum amplification, is
predominantly in the Eη term. This imposes that the amplification at time t is equal
to

G ≡Max

(
E(t)

E(0)

)
= β̃2Re2

δ G̃(̃t, β̃2, β̃2Ha2
δ ), (A 16)

where G̃(̃t, β̃2, β̃2Ha2
δ ) is a function determined by an optimization problem: find the

optimum perturbation in ṽ, η̃ satisfying (A 9)–(A 11), which maximizes the ratio

Eη (̃t)

Ew(0)
(A 17)
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Figure 15. Streamwise optimal perturbations in the square duct for Reynolds number
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are shown at time Topt by the isolines of streamwise velocity perturbation u (only one half of
the domain is visualized). Note that the ‘virtual’ wavenumber β (used in (A 1)) is considered
along the z direction.

at t̃ . Let us now assume that β̃ tends asymptotically to zero as Haδ grows. In that
case,

G = Re2
δ β̃

2H̃
(
t̃ , β̃2Ha2

δ

)
=

Re2
δ

Ha2
δ

β̃2Ha2
δ H̃

(
t̃ , β̃2Ha2

δ

)
=

Re2

Ha2
β̃2Ha2

δ H̃
(
t̃ , β̃2Ha2

δ

)
,

where H (̃t, R) is a function determined by a simplified optimization problem: find the
optimum perturbation in ṽ, η̃ satisfying equations depending on a unique coefficient
R,

∂t̃D̃η̃ = D̃3η̃ − iD̃
(
ṽD̃Ũ0

)
− iRφ̃, (A 18)

∂t̃D̃
2ṽ = D̃4ṽ + Rṽ, (A 19)

D̃2φ̃ = iD̃η̃, (A 20)

which maximizes the ratio (A 17) at t̃ . Figure 14 shows that this scaling is observed
in our calculations, since it is easily seen that

t̃ = t
ν

δ2

L

U0

= t
L2

δ2

1

Re
= t

Ha

Re

because the Shercliff layer scales with δ≈L/Ha1/2.
Let us now assume that function RH (̃t, R) possesses a global maximum at R = Rc

and t̃ = t̃c, which can be checked numerically. This is easily seen to imply the scalings

Mstream =
Re2

Ha2
RcH (̃tc, Rc), (A 21)

β =
L

δ
β̃ =

L

δ

√
Rc

Haδ

=
√

Rc and Topt =
Re

Ha
t̃c, (A 22)

which are well supported by the results in figure 14. They also account for the Ha

scaling for Mstream in figure 5. Finally, figure 15 demonstrates that the number of
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vortices in the Shercliff layers hardly changes with Ha; i.e. the effective wavenumber
β̃ tends to zero with increasing Haδ , while the product β̃Haδ remains nearly constant.
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